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Abstract 

For spectral testing of Built-in Self-Test Analog to Digital 

Converters, it is a very challenging task to precisely 

control the amplitude and frequency of input sinusoid 

signal. Amplitude over-range results in clipping ADC 

output and non-coherent sampling results in spectral 

leakage. In this paper, a new method is proposed that 

provides accurate spectral results even when the input to 

ADC is both over-ranged and non-coherently sampled. 

This relaxes the condition to have precise control over the 

input signal and thus decreases the cost. The method 

includes fundamental identification, removal and residue 

interpolation to obtain accurate spectral results. 

Simulations show the functionality and robustness of 

proposed method with both non-coherency and amplitude 

over-range. Measurement results of a commercially 

available 16-bit SAR ADC are used to verify the method 

for both functionality and robustness. 

 

1. Introduction 

With advancements in technology, more complex circuits 

such as System on Chips (SoC) are designed. Though this 

approach decreases the design cost by embedding more 

circuits on a single chip, it increases the cost associated 

with testing such systems. This is because, it becomes both 

challenging and expensive to de-embed each block 

separately for testing. In order to decrease the test cost, 

there is a strong drive to design Built-in Self-Test (BIST) 

circuits in which both the testing circuitry and Device 

under Test (DUT) are on the same chip. 

Analog-to-Digital Converters (ADC) are one of the most 

widely used integrated circuits (IC) in SoCs. ADCs are 

usually tested for static characteristics such as Integral 

Non-linearity (INL) and dynamic characteristics such as 

Total Harmonic Distortion (THD) and Spurious Free 

Dynamic Range (SFDR) [1-2]. Spectral testing of ADCs is 

also called AC testing and includes testing of ADCs 

dynamic characteristics. A method is said to perform Full 

Spectrum test when the method not only tests for dynamic 

specifications but also focuses on testing all spectral bins 

including harmonic and non-harmonic bins. Being able to 

perform Full Spectrum test is especially important for 

systems whose SFDR is limited by non-harmonic spurious 

tones, such as time-interleaved ADCs. The test setup for 

both spectral test and Full spectrum test is the same as 

shown in Fig. 1.  

To accurately perform spectral testing, the IEEE standard 

for Digitizing Waveform Recorders (IEEE Std. 1057) [3] 

and IEEE standard for Terminology and Test Methods for 

Analog-to-Digital Converters (IEEE Std. 1241) [4] 

recommend the test setup to satisfy the following five 

conditions. The first condition is to have an input signal 

that is at least 3-4 bits more pure than the ADC under test. 

The second condition is that the relative jitter between the 

input signal and clock signal should be very less. The third 

condition is to sample the input signal coherently. The 

fourth condition is that the amplitude of the input signal 

should be slightly lower than the ADC input range so that 

the ADC output is not clipped. The fifth condition is to 

have sufficient data record length. It can be mentioned that 

the initial four conditions are challenging to achieve, 

especially for BIST ADCs. This work aims at relaxing two 

of these challenging requirements to enable BIST ADC 

design. 

In BIST ADCs, since both the testing circuitry and the 

ADC are present on the same chip, it would be challenging 

to achieve precise control over frequency and amplitude of 

the test input sinusoid signal. Due to imprecise frequency 

control, coherent sampling cannot be achieved unless a 

master clock is used. However, using master clock on-chip 

is not an attractive solution as it increases the silicon area. 

On the other hand, due to imprecise amplitude control, 

there could be cases when the input signal to ADC exceeds 

the input range of ADC. Such cases result in clipped ADC 

output. Both these situations could occur in BIST ADCs 

and can result in grossly wrong spectral results if Discrete 

Fourier Transform (DFT) is performed on such data. As a 

result, it is important to design a robust method that can 

accurately test the dynamic characteristics of an ADC even 

when the input signal is slightly over-ranged and is non-

coherently sampled. 
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Fig. 1: Setup to test ADC Spectral characteristics. 
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In the literature, several methods have been proposed to 

obtain accurate spectral results when the input is non-

coherently sampled. Such methods include windowing 

method [5], interpolating DFT method [6], singular value 

decomposition method [7], four parameter sine fitting 

method [8] and fundamental identification and 

replacement methods [9-11]. However, in the presence of 

clipped ADC output, none of the above methods provide 

accurate spectral results. 

The issue of over-ranged input was discussed in the recent 

past. In [12], a method to identify the fundamental and 

estimate ENOB when the input is over-ranged was 

proposed. However, the method cannot be used for high 

resolution ADCs and also cannot estimate all spectral 

parameters accurately. In [13], a technique to suppress the 

spurious noises generated by ADC clipping using 

interpolation of clipped samples was proposed. The 

method involves oversampling, polynomial spline and sinc 

function interpolation which is complex. In [14], 

oversampling ADC output was used followed by 

polyphase decomposition to compensate for clipping.  

It can be said that none of the methods mentioned above 

can accurately test spectral characteristics of high 

resolution ADCs when the input is simultaneously over-

ranged and non-coherently sampled. For BIST ADCs to be 

practical, it is important to develop such a method as it is 

challenging to achieve precise control over frequency and 

amplitude of input signal. Other advantage of using such a 

method is that the whole range of ADC can be tested [12]. 

In this paper, such a method that can accurately test the 

spectral characteristics of ADC when the input signal is 

slightly over-ranged and is not coherently sampled is 

proposed. The input over-range is limited to 2% of the 

input range of ADC. This is a valid and practical limit for 

BIST ADCs as amplitude of the on-chip input signal to 

ADC can be controlled up to 2% without any challenges. 

The proposed method involves accurate estimation of the 

fundamental component and later subtracts the estimated 

fundamental from the output of ADC to obtain the residue. 

The residue is then interpolated to obtain accurate 

information of ADC’s harmonics. The performance of the 

proposed method with respect to jitter and noise would be 

similar to the method using coherent sampling. 

The remainder of the paper is presented as follows. In 

section II, a brief overview of non-coherent sampling and 

ADC output clipping is presented. In Section III, a new 

method is proposed that can accurately estimate spectral 

characteristics when the ADC output is both clipped and 

non-coherently sampled. In Section IV, simulations are 

presented that show the accuracy and robustness of the 

proposed method. In Section V, measurement results are 

shown to validate the functionality of proposed method 

and the advantages and limitation of the method are briefly 

discussed in Section VI. Section VII concludes the paper. 

2. Effect of non-coherent sampling and 

ADC clipping 

Before discussing about the effects of non-coherent 

sampling and ADC clipping, a brief overview about the 

ADC input range is presented. For a given N-bit ADC 

with a gain of 1 and no offset, let T (0 to VADC) be the total 

input range of the ADC that covers all the codes from 0 

(000...0) to 2N-1 (111...1) as shown in Fig. 2. For any input 

below 0, the output is clipped at 0(000...0) and for any 

input above VADC, the output is clipped at 2N-1 (111...1). 

The linear range of the ADC is the range in which the 

ADC is tested and is recommended to be operated. In 

major applications, the total range of ADC is tested. In 

such cases, T would be the linear range. However, in some 

applications, ADCs are tested only for a partial range in 

which they are intended to be applied. As shown in Fig. 2, 

the linear range of the ADC that needs to be tested is given 

by TL (= Ft – Fb), where Ft and Fb are the top and bottom 

values of range TL respectively. In such cases, if the input 

is below Fb (above 0) or above Ft (below VADC), the ADC 

provides a valid code and does not clip. Taking spectrum 

of such output would result in pessimistic results as the 

tested results do not correspond to the actual linear input 

range. From this point, in this paper, the term “input range 

of ADC” corresponds to the linear input range of the ADC 

that is tested. If T is the input range of ADC that is to be 

tested, then, Ft =2N-1 and Fb=0.  

Let fSig be the frequency of input signal to ADC, fSamp be 

the clock frequency, M be the total number of data points 

recorded to measure the spectral characteristics and J be 

the total number of periods of the input signal sampled in 

M points. The four parameters are related by equation (1).  

Sig

Samp

f
J M

f
                               (1) 

The M point data record is said to be coherently sampled if 

J in (1) is an integer and, non-coherently sampled if J is 

not an integer. 

Let the input range of ADC under test be [Fb Ft] as shown 

in Fig. 2. Let X(t) be the time domain representation of 

analog input to ADC at time t. X is ideally a pure sine 

wave and is given by (2). 

     cos 2OS SigX t V A f t w t                     (2) 

where, A and ϕ are the amplitude and initial phase of the 

fundamental respectively, Vos is the DC level and w(t) is 

the noise at time t. The conditions to obtain in-range and 

over-range input signals are given by (3) and (4) 

respectively.  

(VOS + A <= Ft) AND (VOS – A >= Fb)               (3) 

(VOS + A > Ft)   OR   (VOS – A < Fb)                 (4) 
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Fig. 2: Figure showing the total range, T (Codes 000…0 to 111..1) and 

the linear input range, TL (Ft to Fb) of ADC. T = TL if, Ft = 111..1 and Fb 

= 000..0. 

The standard setup to test an ADC is shown in Fig. 1. The 

amplitude of the input signal is slightly below the ADC 

input range and the input signal is coherently sampled. 

Later DFT is performed on the data to obtain a spectrum 

as shown in Fig. 3. It can be seen that the spectrum is 

clean and total power of fundamental is present in a single 

bin corresponding to the frequency and so is the case with 

all harmonics. As a result, power of each harmonic 

component can be calculated accurately. This procedure 

gives accurate spectral results [1,9].   

2.1 Non-coherent sampling 

If the input signal is within the input range of ADC and is 

not coherently sampled, J in (1) is not an integer and 

equation (3) is true. Acquiring such data and taking DFT 

would result in a spectrum with huge leakage due to non-

coherent sampling of fundamental component [9]. Such a 

spectrum leads to inaccurate test results as described in 

[9]. 

2.2 ADC Clipping 

If the input signal is coherently sampled and is over-

ranged (J in (1) is an integer and equation (4) is true), the 

output of ADC is clipped. The spectrum of such clipped 

data is shown in Fig. 4. It can be seen that severe 

distortion is introduced due to clipping which provides 

inaccurate spectral results. 

2.3 Non-coherent sampling & ADC Clipping 

If the input signal to ADC is simultaneously over-ranged 

and non-coherently sampled, the DFT of the output of 

such data would result in a spectrum as shown in Fig. 5. 

The spectrum not only has leakage due to non-coherent 

sampling but also has higher distortions due to clipped 

ADC output. The spectrum cannot provide accurate 

spectral results. As mentioned earlier, such cases could 

arise in BIST ADCs due to lack of precise control over 

amplitude and frequency of input. A test method that can 

accurately estimate all the spectral characteristics of ADC 

when the input is both over-ranged and non-coherently 

sampled is required. 

From Fig. 5, it can be stated that, when DFT is performed 

on a non-coherently sampled, slightly clipped ADC 

output, the leakage and distortion in the spectrum is 

mainly due to the fundamental component in ADC output. 

The effect of non-coherent sampling can be eliminated by 

first accurately estimating the non-coherently sampled, 

over-ranged fundamental component in ADC output. The 

estimated fundamental is then clipped and subtracted from 

the ADC output to obtain the residue. This residue 

contains the information of harmonics and noise of ADC 

(at points when the ADC output is not clipped). Fig. 6 

shows the spectrum of residue and it can be seen that 

leakage is eliminated. 

The effect of clipping can be removed by constructing a 

coherently sampled, unclipped fundamental signal and 

adding the information of harmonics and noise at each 

code hit by the newly constructed fundamental. This 

information of harmonics and noise can be obtained by 

interpolating the residue from ADC output codes that are 

not clipped. A block diagram showing the summary of 

proposed method is shown in Fig. 7. 

To identify the fundamental in clipped ADC output data, 

methods described in [10-11] cannot be used as they do 

not consider the effect of clipping. The methods were used 

for high resolution spectral testing where the distortion 

power is negligible compared to that of the fundamental 

power. However, in presence of clipping, the distortion 

power is no longer negligible compared to that of the 

fundamental. So, a new fundamental identification method 

is required that is valid for clipped data. In the following 

section, a method to accurately estimate the spectral 

characteristics of an ADC when an input is non-coherently 

sampled and is over-ranged is proposed. A new method to 

identify the fundamental component in a non-coherently 

sampled, clipped ADC output data is described. The 

process of interpolating the residue is explained in detail. 
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Fig. 3: Spectrum of a coherently sampled, unclipped ADC output data 
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Fig. 4: Spectrum of a coherently sampled, clipped ADC output data 
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Fig. 5: Spectrum of a non-coherently sampled and clipped ADC output. 
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Fig. 6: Spectrum of the residue obtained after subtracting the non-

coherently sampled, over-ranged fundamental from ADC output in Fig. 5. 

Leakage due to non-coherent sampling is eliminated. 

Collect the 

data
Estimate non-coherent, 

over-ranged fundamental

Obtain residue by subtracting 

the estimated fundamental 

from the output data

Genrate a coherently sampled, 

in-range fundamental and 

Interpolate the residue

Add interpolated residue 

to coherent fundamental Perform DFT

Fig. 7: Summary of proposed method. 

3. Proposed Method 

Let x[n] be the nth sampled point of X(t). Let yA[n] be the 

analog interpretation of nth sampled digital output of ADC 

whose gain and offset are corrected. From (1), (2), (3), (4) 

and noting that the over-range up to 2% is considered, x[n] 

and yA[n] can be represented by equations (5-6) 

respectively. 

2
[ ] cosOS

J
x n V A n

M




 
   

 
                          (5) 

2

2 2
[ ] cos cos [ ]   if 0 [ ]

        0                                                                                       if [ ] 0 

             

H

A OS h h ADC

h

ADC

J hJ
y n V A n A n w n x n V

M M

x n

V

 
 



   
          

   

 





                                                                             if [ ] ADCx n V

(6) 

for n = 0,1,2,….,M-1, w[n] is the noise in nth sample, Ah 

and ϕh respectively contain the information of amplitude 

and phase of hth harmonic of ADC such that Ah<<A and 

ϕhϵ(0 2π]. M is usually selected to be a power of 2 for 

faster processing of Fast Fourier Transform (FFT). If yA[n] 

is non-coherently sampled, J is not an integer and is given 

as the sum of an integer part Jint and a non-integer part δ (J 

= Jint + δ) 

Before the fundamental is identified, in order to test ADC 

within the input range given by [Fb Ft], equation (6) can be 

changed to (7). This includes clipping the values of yA that 

are not in the ADC input range. It should be noted that if 

Ft = VADC and Fb = 0, equation (6) is equal to equation (7). 

[ ] [ ]     if [ ]

                if [ ]

                if [ ]

A b A t

b A b

t A t

y n y n F y n F

F y n F

F y n F

  

 

 

                        (7) 

The sample waveforms of x and y are shown in Fig. 8. As 

input, x, exceeds the input range of ADC, y is clipped. 

With this clipped data, the fundamental component is 

estimated as described in the following section. 

3.1 Fundamental Identification 

From (6-7), in order to identify the fundamental, it is 

required to estimate VOS, A, Jint, δ and ϕ. All the five 

parameters can be estimated using both time domain and 

frequency domain data. It should be noted that there is no 

information of fundamental or harmonics in the points that 

are clipped. 

3.1.1 Estimate A and VOS 

From equations (6-7), it can be seen that y contains J 

cycles of the input signal. All the points in y and x are 

folded in to a single cycle as shown in Fig. 9 to obtain y1 

and x1 as given by (8-9) respectively. The effect of 

harmonics is neglected since Ah<<A. 

1

2
[ ] cosOS

n
x n V A

M




 
   

 

                            (8) 

1 1

1

1

2
[ ] cos      if [ ]

                                              if [ ]

                                              if [ ]

OS b t

b b

t t

n
y n V A F x n F

M

F x n F

F x n F




 
     

 

 

 

                   (9) 

Let Kt and Kb be the total number of points in y1 that are 

equal to Ft and Fb respectively. Let φ and ψ be the phases 

in y1 when the clipping stops at Ft and clipping starts at Fb 

respectively as shown in Fig. 9. Using Kt and Kb, the 

values of φ and ψ are obtained from equation (10). 

1 1
,     t bK K

M M
    

 
                            (10) 

Substituting Ft and Fb for y1 in (9) at phases φ and ψ 

respectively, the values of A and Vos can be estimated (11-

12). 

1 1
cos cos

t b

t b

F F

K K

M M

A

 




 


   
   
   

                  (11) 

1 1
cos cos

2

b t
t b

OS

K K
F F A

M M
V

 
 

  



    
    

           (12) 
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Fig. 8: Plot showing a sample waveform of input to ADC, x (Eq. 5) and 

modified output of ADC, y (Eq. 7). 
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Fig. 9: Plot showing signals x1 and y1 after folding x and y in to one cycle. 

Kt and Kb are total number of points in y1 (or y) equal to Ft and Fb 

respectively. 

It should be noted that it is not required to perform this 

folding operation in the algorithm. It was used only to 

elucidate the procedure to estimate A and VOS. From (11-

12), to estimate A and VOS, the values of Ft, Fb, Kt and Kb 

are required. Ft and Fb are known from the input range of 

ADC while Kt and Kb can be obtained by processing y 

directly. 

3.1.2 Estimate Jint, δ and ϕ 

The remaining three parameters are estimated using both 

time and frequency domain data of y. DFT is applied on y 

to obtain Yk {kth DFT coefficient} given by (13). 

21

0

[ ] ,    for k = 0, 1, 2, ...., M-1
kM j n

M
k

n

Y y n e
 



        (13) 

Jint is estimated as the bin index that has the maximum 

power in half spectrum excluding DC component and is 

given by equation (14). 

1 /2
int arg max | |k

k M

J Y
 

                         (14) 

From [15], to obtain the initial estimates of δ and ϕ, for 

M>1024, Yk is given as (15) 

 

 

2

2

1

2
1

j J k

j
k J k

j
M

A e
Y e

M
e















                     (15) 

Using YJint, YJint+1 and YJint-1, from (15), the initial values 

of δ and ϕ can be obtained using (16-17) respectively. 

int int

int int

int int

int int

1 1

0 2 2

1 1

ln
2

J J

J J

j jJ J M M

J J

Y Y

Y YM
imag

Y Y
e e

Y Y

 




 



 

  
  

  
   

    
  
  

     (16)

 
0

0
0

int

2

2

2 1
ln

1

j
M

j

JMY e
imag

A e







 



  
  
  

  
  

              (17) 

Since, Yk corresponds to a non-coherently sampled data, 

the values of δ and ϕ obtained are not accurate. Let Δδ 

(=δ-δ0) and Δϕ (=ϕ-ϕ0) correspond to errors in estimating δ 

and ϕ using (16-17) respectively. It is required to estimate 

these errors in order to improve accuracy of estimated δ 

and ϕ.  

Substituting the estimated values in y (eq. 7) gives 

equation (18) and rearranging the terms, we get (19). The 

effect of harmonics is neglected and “n” in (18-19) 

correspond to the samples that are not clipped. The points 

in y that are close to Vos (mid-range codes) are considered 

in (19) as shown in Fig. 10. These points are considered 

because, they are linear in the range and give good 

estimates of Δδ and Δϕ when Least squares is applied on 

(19). After estimating Δδ and Δϕ, using (11-12), (14), (16-

17) the initial estimated fundamental, zi, is given by (20). 

 int 0
0

2
[ ] cosOS

J n
y n V A

M

  
 

   
     

 

    (18) 

 int 01
0

22 [ ]
cos

OS J nn y n V

M MA

 
  

  
      

 

 (19) 

 
 int 0

0

2
[ ] cosOSi

J
z n V A n

M

  
 

   
     

 

  (20) 

To further improve the accuracy in estimating A, let ΔA be 

the error in estimating A (eq. 11). ΔA can be estimated by 

first clipping zi to obtain zic and subtracting zic from ADC 

output, y, to obtain the error signal, ez as shown in (21-22). 

Later, DFT is applied on ez and the fundamental amplitude 

in ez, ΔA, is estimated using (23) (from eq. (15)). k in 

(23) is the kth DFT coefficient of ez. Now the actual 

fundamental component in y can be estimated as z using 

(24) and is shown in Fig. 11a (green dotted plot). 

Ft

Fb

Points considered for 

Least Squares using (19)

 

Fig. 10: Plot showing signal y and the points considered for Least squares 

using equation (19). Only output codes around mid-range are considered. 



 

Paper 12.1                                   INTERNATIONAL TEST CONFERENCE                                       6                            

                                                    

[ ] [ ]               if [ ]

                           if [ ]
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Since, non-coherently sampled fundamental is the major 

source of error, subtracting the estimated fundamental, z, 

from ADC output, y, eliminates the effect of non-coherent 

sampling 

3.2 Obtain Error (Harmonics + Noise of ADC) 

Information 

The residue, e, obtained after subtracting the estimated 

fundamental, z, from modified ADC output, y, is shown in 

Fig. 11b. It can be seen that the shaded regions contain no 

information about the ADC non-linearity as the input 

signal is not in the ADC input range. So, the information 

of harmonics and noise of ADC is present only in the 

points that are not clipped in y. In order to include the 

dynamic effects of ADC, the error voltage, e, is separated 

into two categories, FP and RP which correspond to the 

error voltage when the input signal is falling and rising 

respectively as shown in Fig. 11b. The error voltage in FP 

and RP categories is separated to be ef and er respectively. 

From Fig. 11a and 11b, for each sample in RP, the value 

of er[n] is plotted with respect to corresponding y[n] as 

shown in Fig. 12b. Similarly, ef[n] is plotted with respect 

to y[n] as shown in Fig. 12a. With this, error in both 

phases (Rising and Falling) with respect to the code hit by 

ADC is obtained. This error contains the information of 

harmonics and noise of ADC. 

3.3 Coherent time domain data reconstruction 

With the information of Jint, ϕ and ADC range (Ft and Fb), 

the input signal that is coherently sampled and covers the 

input range of ADC (without clipping) is obtained and is 

given by v in (25). It is required to add the information of 

harmonics of ADC on to each sample of the coherent 

fundamental v to accurately estimate the spectral 

characteristics. 

It should be noted that the codes hit in ADC output, y, are 

not the same codes that are hit using v (Coherent, 

unclipped). To obtain the errors corresponding to each 

code in v, first, all points in v are folded into one cycle to 

get v1 given by (26) as shown in Fig. 13 (blue). Also, 

shown in Fig. 13 is the folded ADC output y1 (red). The 

information of error for each sampled point in the falling 

phase of v1 is obtained by using ef as shown in Fig. 14 

(blue straight lines). For each sampled point in falling 

phase of v1 (v1[c]), two codes in y1 (y1[a] and y1[b]) that 

are in the falling phase and close to v1[c] are used and 

interpolation of the two errors at those codes (ef[a] and 

ef[b]) is performed to estimate the error at code v1[c] 

(given as ev[c]). The interpolation equation is as shown in 

(27). Similarly, the error information for the rising phase 

of v1 can be obtained by interpolating er (Red straight lines 

in Fig. 14).  
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Fig. 11: a): TOP :- Figure showing ADC output, y and estimated 

fundamental, z. b) BOTTOM :- Figure showing the error (Harmonics + 

Noise) information, e, of ADC. (RP: Rising Phase, FP: Falling Phase, 

Shaded: Neglect).  Both axes share the same x-axis (time) 
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Fig. 12:a) LEFT:- Plot of error in FP, ef versus ADC output code, y. b) 

RIGHT:- Plot of error in RP, er versus ADC output code, y. 
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Fig. 14: Figure illustrating the interpolation of error onto v1. Error in ef is 

interpolated onto points in v1 in falling phase (Here left half of v1) while 

error in er is interpolated onto points in v1 in rising phase (Here right half 

of v1) 
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The information of error obtained for each code hit by v1 

(in both rise and fall phases) is then added to v1 to get f1. f1 

is then unfolded into Jint cycles to obtain f. It should be 

noted that f contains not only the information of coherent 

fundamental but also the accurate information of 

harmonics and noise of ADC. Taking FFT of f would 

result in a spectrum that looks identical to the spectrum 

obtained using ideal test setup. Hence, accurate spectral 

characteristics of ADC can be obtained even with non-

coherently sampled and clipped data using proposed 

method.  

It can be argued that the dV/dt effects are not the same for 

both the signals y and v (from Fig. 13). However, since in 

this paper, only 2% over-range is considered, it can be 

mentioned that the dV/dt effect on harmonics’ estimation 

is negligible 

3.4 Need for interpolation 

It should be noted that the step to perform interpolation for 

each point on the coherently sampled data (v) is important 

to test high resolution ADCs. If interpolation is not 

performed, the residue obtained (after clipping and 

subtracting the estimated fundamental from the clipped 

ADC output) is directly added to the coherently sampled 

fundamental, v, to obtain final data. DFT is performed on 

this data to perform spectral test.  Let this process be 

called “Method B”. Method B can be used only when the 

power associated with the clipped points is less than the 

noise power of the ADC. Hence Method B can be used to 

test only low resolution ADCs. However, as the resolution 

of ADC increases, the noise power of ADC decreases and 

Method B cannot be used. For instance, consider testing a 

12-bit ADC and 16-bit ADC with non-coherently sampled, 

1.7% over-ranged input signal. The spectral results 

obtained using three methods are given in Table 1 and 

Table 2. The first method is the standard method with 

unclipped and coherently sampled ADC output. The 

second method is using Method B and the third method is 

using the proposed method on the same ADC with non-

coherently sampled, over-ranged input. From Tables 1 and 

2, it can be seen that Method B provides accurate results 

only for the 12-bit ADC. However, the proposed method 

can be used to test both low and high resolution ADCs 

accurately. Hence, it is important to perform residue 

interpolation to obtain accurate spectral results when an 

input to ADC is over-ranged and is non-coherently 

sampled.  

TABLE 1: Spectral results of a 12-bit ADC 

Method 

THD 

(dB) 

SFDR 

(dB) 

Coherent Unclipped (Reference) -70.3 73.9 

Method B (No interpolation) -70.5 74.7 

Proposed Method(With Interpolation) -70.8 74.3 

TABLE 2: Spectral results of a 16-bit ADC 

Method 

THD 

(dB) 

SFDR 

(dB) 

Coherent Unclipped (Reference) -93.1 97.7 

Method B (No interpolation) -79.7 84.2 

Proposed Method(With Interpolation) -93.3 97.7 

The flow chart to perform accurate ADC spectral testing 

with non-coherent sampling and over-ranged input using 

the proposed method is shown in Fig. 15. The steps in 

solid rectangle can be used when the output is non-

coherently sampled while the steps in dotted rectangle can 

be used when the output is clipped 

3.5 Comparison with 4 parameter sine fit 

The fundamental identification method in Section A can 

be replaced with the four parameter sine fit method as 

described in [4] with slight modification. Both the 

methods provide accurate estimates of the fundamental. 

However, the proposed method is more computationally 

efficient than the four parameter sine fit method. Using 

four parameter sine fit method, all unclipped points in data 

are considered to perform non-linear least squares. This 

includes large data set and several iterations to obtain 

convergence which consumes large computation time. 

However, in the proposed method, the time consuming 

blocks are FFT and linear least squares method. As M is 

usually selected to be a power of 2, FFT consumes very 

small amount of time. Since a very small number of points 

around the mid-range codes are considered for linear least 

squares (as shown in Fig. 10), this operation also does not 

consume more time. The other factor which makes the 

proposed method more time efficient compared to the four 

parameter sine fit method is that, there is no necessity to 

perform iterations 
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Acquire M points, yA

Estimate Jint, δ0 and ϕ0 using (14,16,17)

Estimate Δδ and Δϕ using Least Squares on (19)

Construct intial estimate of fundamental, zi (20)

Obtain ez and perform DFT to estimate ΔA (23)

Obtain final estimate of fundamental, z using (24)

Subtract z from y and obtain ef and er

Construct a coherent fundamental, v using (25)

Interpolate the information of error on to each 

point in v and add that to v to get f

Perform DFT on f

Compute accurate spectral 

characteristics

Obtain y using equation (7)

Estimate A and VOS using (11-12)

Perform DFT on y, Yk

 
Fig. 15: Flow chart to perform accurate ADC spectral test using proposed 

method on Non-coherently sampled, clipped ADC output. Solid rectangle 

steps used when signal is non-coherently sampled. Dotted rectangle steps 

used when output is clipped. 

4. Simulation Results 

The accurate functionality and robustness of the proposed 

method is shown using simulation results in this section. 

4.1 Functionality 

A 16-bit ADC with INL of 1.5LSB was generated using 

MATLAB. A total of 8192 points were sampled. The 

ADC was first tested with a sine wave that is coherently 

sampled and not clipped. The signal is generated such that 

it covers the ADC input range without getting clipped. 

The values of THD and SFDR obtained are considered as 

the reference values. The same ADC is later fed with an 

over-ranged, non-coherently sampled input signal. The 

output is processed using the proposed method and the 

values of THD and SFDR are compared. 

Fig. 16 shows the spectrum of ADC output when it is 

coherently sampled. The value of J = 3241. It can be seen 

that there is no leakage in the spectrum and the values of 

THD and SFDR obtained are listed in Table 3. Fig. 17 

shows the spectrum of the same ADC output when a non-

coherently sampled, over-ranged input signal is fed to the 

ADC. The value of J is 3241.199 and over-range is 0.78%. 

It can be seen that there is both leakage and severe 

distortion in the spectrum. Later the same ADC output is 

processed using the proposed method and the spectrum 

obtained is as shown in Fig. 18. The spectrum is clean and 

it exactly matches with the spectrum obtained using 

coherent sampling. The values of THD and SFDR 

obtained using proposed method are listed in Table 3. 

From Table 3 and Fig. 18, it can be said that the proposed 

method accurately estimates the THD and SFDR of a non-

coherently sampled, clipped ADC output. 
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Fig. 16: Spectrum of a coherently sampled, unclipped ADC output (J = 

3241) 
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Fig. 17: Spectrum of DFT of a non-coherently sampled, clipped ADC 

output (J = 3241.199  δ = 0.199, %over-range = 0.78) 
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Fig. 18: Spectrum of a non-coherently sampled, clipped ADC output after 

using proposed method (J=3241.199 δ = 0.199, % Over-range = 0.78) 

TABLE 3: Spectral results of 16-bit ADC (Fig.16, Fig. 18) 

Method 

THD 

(dB) 

SFDR 

(dB) 

Coherent + Unclipped + DFT -93.7 99.2 

Non-coherent+Clipped + Proposed -94.1 99.2 
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4.2 Robustness 

The robustness of proposed method is shown with 

respect to non-coherent sampling and amplitude clipping 

up to 2%. A 16-bit ADC was generated using MATLAB 

with an INL of 1.8 LSB. A total of 500 runs with 

randomly selected values of δ and over-range were run. 

The values of δ vary from -0.5 to 0.5 (total range) and 

over-range percentage was in the range 0 to 2. The data 

record length for each run was 8192. Fig. 19 shows the 

errors in estimating the values of THD with any value of δ. 

Fig. 20 shows the errors in THD with change in percent 

input over-range. The maximum error obtained in 

estimating THD is about 0.9dB. This shows that the 

method is robust to both non-coherent sampling and 

amplitude over-range up to 2%.  

5. Measurement Results 

In this section, the proposed method is verified using 

measurement results from industry labs using a 

commercially available high resolution ADC. 

The ADC that is used is ADS8318 which is a 16-bit 

Successive Approximation Register (SAR) ADC clocked 

at 500 kSPS. The input range of ADC is 0 to 5V. Fig. 21 

shows the test setup. The input signal is followed by two 

band pass filters each with center frequency at 10 kHz. 

The output of the second band pass filter is fed to the input 

of ADC. A total of 8192 samples are collected.  

The input frequency to achieve coherent sampling is given 

by 10.070800781 kHz which gives a value of J = 165. The 

blue spectrum in Fig. 22 shows the spectrum obtained 

using coherently sampled and unclipped data. It can be 

seen that there is no leakage in the spectrum.  

Later, the frequency of input signal is changed to 

10.0494768908 kHz and the input amplitude is slightly 

increased to be about 1.5% more than the ADC input 

range. As a result, the input signal is both non-coherently 

sampled (J=164.65, δ ≈ -0.35) and over-ranged (1.5%). 

The green plot in Fig. 22 shows the spectrum obtained 

without any correction. As expected, there is huge spectral 

leakage and higher distortion in the spectrum. The same 

time domain data is then processed using the proposed 

method. The red plot in Fig. 22 shows the spectrum 

obtained using the proposed method. It can be seen that 

the red spectrum (Non-coherent + Clipped + Proposed 

method) matches exactly with that of the blue spectrum 

(Coherent + Unclipped). The values of THD, SFDR and 

SNR obtained using standard coherent sampling method 

on unclipped data and proposed method on non-coherently 

sampled, clipped data are listed in Table 4. From Table 4 

and Fig. 22, the accurate functionality of the proposed 

method with non-coherently sampled and over-ranged 

input is verified. 
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Fig. 19: Error in estimating THD values (in dB) using proposed method 

over whole range of δ. 
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Fig. 20: Error in estimating THD values (in dB) using proposed method 

for different input over-range amplitudes. 

 
Fig. 21: Test setup for Measurement data of ADS8318. 
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Coherent + Unclipped + DFT

Noncoherent + Clipped + DFT

Noncoherent + Clipped + Proposed

 
Fig. 22: Spectrums showing the accurate functionality of the proposed 

method. BLUE: Spectrum with Coherently sampled, unclipped data, 

GREEN: Spectrum with clipped and non-coherently sampled data, RED: 

Spectrum with Non-coherently sampled, Clipped data using the proposed 

method. (δ=-0.35, % over-range = 1.5) (For color version, visit IEEE 

online or contact authors) 
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TABLE 4: Spectral results of ADS8318 from Fig. 22 

Method 

THD 

(dB) 

SFDR 

(dB) 

SNR 

(dB) 

Non-coherent + Clipped + 

Proposed (Red plot in Fig. 22) -107.6 109.2 95.7 

Coherent + Unclipped + DFT 

(Standard, Blue plot in Fig. 22) -107.5 108.5 95.8 

6. Discussion 

From the above discussion, it can be said that the proposed 

method can relax two of the requirements to perform 

spectral testing. The advantages include reduction in the 

cost associated with achieving coherent sampling and with 

requiring precise amplitude control of the input. However, 

in the presence of noise and jitter, the method provides 

results with the same accuracy as the standard coherent 

sampling method. It was also shown that the proposed 

method is more computationally efficient compared to the 

four parameter sine fit method. One of the key salient 

features of the proposed method is to interpolate the error 

obtained, to achieve accurate results as shown in section 

3.4. As a result, the method provides accurate results 

compared to the method in [12] which does not involve 

interpolation. Furthermore, the proposed method can 

perform full spectrum test unlike the method proposed in 

[12].  

7. Conclusion 

A new test method that accurately performs full spectrum 

test of an ADC with non-coherently sampled and over-

ranged input was proposed. This relaxes the requirement 

to have precise control over frequency and amplitude of 

input signal for spectral testing. A new computationally 

efficient method to identify the over-ranged, non-

coherently sampled fundamental using time domain and 

frequency domain data was described. The residue 

obtained after subtracting the estimated non-coherent 

fundamental is interpolated onto a coherently sampled 

signal to obtain accurate spectral results of ADC. 

Simulation results were presented to show the accurate 

functionality and robustness of the proposed method for 

any non-coherency and over-range up to 2%. The 

proposed method was validated using measurement results 

of a 16-bit SAR ADC when the output data is non-

coherently sampled (δ = -0.35) and is clipped (1.5%). The 

method can be readily used in applications, where in, it is 

challenging to obtain precise control over frequency and 

amplitude of test signal, such as, BIST ADCs.  
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