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Abstract—Achieving coherent sampling is one of the major
bottlenecks to perform ADC spectral test, especially when high-
precision instruments or high-performance frequency synthesizes
are not readily available. If coherent sampling is not achieved,
there could be huge leakage in the spectrum, which might lead
to inaccurate test results. In this paper, a new fundamental
identification and replacement method is presented that can
completely eliminate the need for coherent sampling in spectral
testing. A two-step fundamental identification method is used to
very accurately estimate the noncoherent fundamental. Extensive
simulation results show the functionality and robustness of
the method. Measurement results obtained in industry labs
using commercially available high resolution ADCs successfully
validate the proposed method for both accuracy and robustness.

Index Terms—ADC test, DFT, fundamental identification,
Newton method, noncoherent sampling, spectral test.

I. Introduction

ANALOG to digital converters (ADCs) are widely used
integrated circuits that have applications in complex

circuits, such as system on chips (SoCs). It is very important
to test ADCs accurately to guarantee specified performance
of a system. ADCs are usually tested for static specifica-
tions, such as integral nonlinearity (INL) and differential
nonlinearity (DNL) and dynamic specifications, such as total
harmonic distortion (THD) and signal to noise ratio (SNR)
[1], [2]. Spectral testing of ADCs is also called AC testing
and includes testing of ADCs dynamic (frequency dependent)
specifications. In contrast, full spectrum testing not only tests
dynamic specifications but also focuses on testing all spectral
bins including harmonic and nonharmonic bins. Being able
to perform full spectrum testing is especially important for
systems whose SFDR is limited by nonharmonic spurious
tones, such as time-interleaved ADCs. The test setup for both
spectral test and Full spectrum test is the same.

Fig. 1 shows a conventional test setup for ADC spectral
test. To accurately perform spectral testing, the IEEE Standard
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for Digitizing Waveform Recorders (IEEE Std. 1057) [3] and
IEEE Standard for Terminology and Test Methods for Analog-
to-Digital Converters (IEEE Std. 1241) [4] recommend the
test setup to satisfy the following five conditions. Firstly, the
spectral purity of the input signal to ADC should be about 3
to 4 bits more pure than the ADC under test. That is, to test an
N-bit ADC, the input signal should be more than N + 3 bits
pure. The second condition is that the peak-to-peak voltage
of the input signal should be slightly lower than the ADC
input range so that the output of the ADC is not clipped.
The third condition is to have very low relative jitter between
the clock and input signals. The fourth condition is that, if
possible, the input signal be coherently sampled. Finally, the
total number of sampled points (or data record length) should
be sufficiently large. The first four conditions mentioned above
are very challenging to achieve, and it is important to satisfy
all conditions to perform accurate spectral test.

Looking into the future, there is a strong drive to design
circuits that have built-in self-test (BIST) capability to de-
crease the test cost. The area required by the testing circuitry
should be very small compared to that of the device under test
(DUT). In such circuits, it is impossible to achieve coherent
sampling with a self-contained oscillator as signal source
implemented on a very small area. Another case is, during
characterization of an ADC, the spectral characteristics of the
ADC at various input frequencies need to be tested. It would
take more test time to achieve coherent sampling in such
cases as the frequencies of input signal and clock signal needs
to be tuned for each input frequency separately to achieve
coherent sampling. This tuning increases the test cost and the
product delivery time. In both the above mentioned cases, it is
either impossible or more time consuming to achieve coherent
sampling. So, there is a strong need to develop new low
cost test methods that can eliminate the condition of coherent
sampling and still provide accurate spectral results.

Two of the methods that are widely used in both industry
and academics are the windowing technique [5]–[10] and the
four parameter sine fitting technique [4]. To obtain accurate
spectral results with windows, the spectral power of secondary
lobes of selected window should be lower than the noise power
of the ADC under test. This requires prior knowledge about
the type of window to be used to accurately test the ADC.
The spectral results obtained are window dependent. Also,
for large noncoherent sampling and high resolution ADCs,
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Fig. 1. Spectral test setup for ADC under test.

not all windows can achieve accurate spectral results [11].
The four parameter sine fitting method is used to characterize
ADCs and digital oscilloscopes for THD and ENOB [12]–
[14]. The method gives accurate values of THD, SNDR,
and ENOB. Also, when the harmonic component determines
SFDR, accurate value of SFDR is obtained. However, when a
nonharmonic component determines SFDR, the method cannot
provide accurate value (As shown in Fig. 4 below and as
discussed in Section II). In such cases, a method intended
for full spectrum test is required. Furthermore, computational
efficiency is one of the concerns when data record length
is large. In [15], a multisine fitting algorithm was proposed
to accurately estimate the fundamental and harmonics of the
signal. The method accurately estimates the values of THD,
SNR, and ENOB if the three initial frequency estimates are
sufficiently close to the true value. However, it cannot provide
accurate value of SFDR when a nonharmonic component is
responsible.

In the recent past, several methods have been proposed
to relax the condition of coherency for spectral testing [16].
A 2-D FFT method was introduced in [17] with a time
complexity of O (M2log2M), where M is the total data record
length. A singular value decomposition method was proposed
in [18], which involves a time complexity of O (M3). In
[19], a filter bank method was reported that results in an
increase in testing circuitry area. A resampling technique was
presented in [20], which again results in increasing area due
to additional decimator used. In [21]–[25], interpolating DFT
(IpDFT) methods were used to eliminate the requirement of
coherency. However, such methods cannot provide accurate
value of SFDR when a nonharmonic spur dominates the har-
monics. In [26], a fundamental identification and replacement
method was proposed that can accurately estimate the spectral
characteristics. However, the method is not robust to signal
frequencies that are close to Nyquist range.

All the above methods suffer from one or more of the
issues, such as large computation time, increase in area, lack
of robustness across the Nyquist range, dependency of results
on the type of window chosen, or the inability to perform
full spectrum test. So, it is required to develop a test method
that can address all the above issues and accurately perform
spectral test without requiring coherent sampling.

In [11], a fundamental identification and replacement
method was proposed that is robust over any level of
noncoherency. The method provides accurate spectral results
for ADCs with medium resolution. However, for very high

resolution ADCs, the estimated spectral parameters have errors
as the accuracy with which the fundamental was identified was
not sufficient.

In this paper, a new fundamental identification and replace-
ment (FIRE) method that addresses all the above issues and
performs accurate spectral testing is presented. Compared to
the method in [11], a new two-step fundamental identification
method that can very accurately estimate the fundamental is
proposed. The initial estimates of parameters are obtained
in step 1 using closed form expressions. In step 2, Newton
method is used to accurately estimate all the parameters.
The estimation is done using the frequency domain data
and is computationally efficient. The estimated noncoherent
fundamental is later removed from the initial data to obtain the
residue. A fundamental that is coherently sampled is added to
the residue and DFT is performed on the final data to obtain
accurate spectral results. The functionality and robustness of
proposed FIRE method is verified using both simulation and
measurement data.

The remainder of the paper is arranged as follows. Section
II discusses ADC spectral test and introduces the problem of
noncoherent sampling. The detailed description of proposed
FIRE method is provided in Section III. Section IV presents
the simulation results and Section V validates the FIRE
method using measurement data. Section VI concludes the
paper.

II. ADC Spectral Test And Non-coherent Sampling

Let f Sig be the frequency of input signal, f Samp be the clock
frequency, M be the total number of data points recorded to
measure the spectral characteristics, and J be the total number
of periods of the input signal sampled in the recorded data.
The four parameters are related by the equation

J = M
fSig

fSamp

. (1)

The sampling is said to be coherent if J in (1) is an integer
that is coprime with M and noncoherent if J is a noninteger.
In addition, it is recommended that J > 5 [4].

A. ADC Spectral Test Using Coherent Sampling

It is recommended to perform coherent sampling to accu-
rately test an ADC. The test setup for coherent sampling was
shown in Fig. 1. Fig. 2 shows the spectrum of an ADC output
data when sampled coherently. It can be seen that the spectrum
is clean and all the above mentioned spectral parameters can
be accurately estimated as explained below.

Let x(t) be the time domain representation of the analog
signal. The signal is ideally a pure sine wave

x(t) = A cos
(
2πfSigt + φ

)
(2)

where, A is the amplitude and φ is the initial phase of x(t).
Let x[n] be the analog interpretation of the digital output

obtained from the ADC whose gain error and offset have been
calibrated. x[n] can be represented by
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Fig. 2. Power spectrum of coherently sampled ADC output.

x[n] = A cos

(
2πJ

M
n + φ

)
+

H∑
h=2

Ah cos

(
2πhJ

M
n + φh

)
+w[n]

(3)
for n = 0,1,2, . . . .,M-1. M is usually selected to be a power
of two for faster processing of the FFT algorithm. H is the
total number of harmonics present in x[n], Ah and φh are
the amplitude and initial phase of hth harmonic, respectively,
such that Ah << A and φh ε [0, 2π) for all 2 ≤ h ≤ H. w[n]
corresponds to white noise in nth sample, which can be due
to quantization noise, input referred ADC noise, and additive
noise in the input signal. The harmonics in the output of ADC,
x[n], correspond to the distortion of ADC.

The spectral parameters can be accurately obtained by tak-
ing discrete Fourier transform (DFT) of M coherently sampled
data points. The DFT of x[n] is given by

Xk =
1

M

M−1∑
n=0

x[n]e−j 2πk
M

n, for k = 0, 1, ..., M − 1 (4)

where k represents the frequency bin’s index. For example,
with coherent sampling, k = h*J represents the frequency bin
of the hth harmonic and if h = 1, k = J represents the frequency
bin of the fundamental. X0 corresponds to the DC component
in signal x[n]. Other values of k correspond to noise.

From (3) and (4), neglecting the effect of noise, Xk can be
simplified and given as

Xk =

(
A

2M

{
sin (π (J − k))

sin
(

π(J−k)
M

) ej(a(J−k)+φ)

+
sin (π (J + k))

sin
(

π(J+k)
M

) e−j(a(J+k)+φ)

}

+
Ah

2M

{
sin (π (hJ − k))

sin
(

π(hJ−k)
M

) ej(a(hJ−k)+φh)

+
sin (π (hJ + k))

sin
(

π(hJ+k)
M

) e−j(a(hJ+k)+φh)

})
. (5)

It can be seen from (5) that, for coherent sampling

XJ =
A

2
ejφandXhJ =

Ah

2
ejφh . (6)

For other values of k, Xk represents the noise as there is no
contribution from the fundamental and harmonics on the bins.
The power of fundamental, hth harmonic and noise can be
accurately estimated as P1, Ph, and Pnoise, respectively, using

P1 = 2 |XJ |2 = A2

2

Ph = 2 |XhJ |2 = A2
h

2

Pnoise =
M−1∑

k=1
k �=J,hJ
h=2,..,H

|Xk|2.
(7)

From (7), the spectral parameters such as THD, SNR, and
SFDR for a coherently sampled signal can be calculated using

THD =

H∑
h=2

Ph

P1

SNR =
P1

Pnoise

SFDR =
P1

2 ∗ max
k=1,..,(M/2)
k �=J

(|Xk|2
) (8)

Equations (6)–(8) give accurate values of spectral parame-
ters. Hence, coherent sampling method can be used for full
spectrum testing. However, achieving coherent sampling is a
very challenging task, because, it is required to use either very
high accuracy frequency synthesizers or phase locked loops
(PLL). This increases the test cost or test area.

B. Issues With Noncoherent Sampling

If coherent sampling is not achieved, J in (3) is not an
integer and as a result, the spectrum may contain severe
skirting as shown in Fig. 3. This phenomenon is widely known
as spectral leakage. One of the methods that is recommended
to tackle the noncoherent sampling issue is four parameter sine
wave fitting method. For small amount of noncoherency, this
method can give accurate values of THD and SNR. However,
occasionally the method fails in estimating the accurate value
of SFDR. This could happen when there is a nonharmonic spur
in the spectrum that contributes for SFDR. Fig. 4 shows the
spectrum of the measured data of a time-interleaved 9-bit ADC
clocked at 800 MHz. It can be seen that there is a nonharmonic
spur present that contributes to SFDR. Such spurs could result
due to several reasons such as timing mismatches or offset
mismatch in a time-interleaved ADC, or variations in power
supply. It is important to find such nonharmonic spurs to
accurately estimate SFDR. As a result, four parameter sine
wave fitting method cannot be used to perform full spectrum
test. The same reason holds for using the interpolated DFT
methods to test noncoherently sampled data [21]–[25].

Also, if the sampling is not coherent, (6) is no longer valid.
Let J = J int + δ, where J int represents the integer part of J and
δ represents the non-integer part of J . δ varies from -0.5 to
0.5. Substituting J in (5) gives (9).

It can be seen that unlike in (5), the contribution from
fundamental and harmonics on to other frequency bins is no
longer zero in (9). As a result, using (6)–(8) to test spectral
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Fig. 3. Power spectrum of noncoherently sampled ADC output.

Fig. 4. Power spectrum of coherently sampled time-interleaved ADC show-
ing a nonharmonic spur.

characteristics of a noncoherently sampled data results in
inaccurate values. Such cases of noncoherent sampling are
very common and it is important to design a test method that
can perform full spectrum test in spite of having noncoherent
sampling.

Xk =

(
A

2M

{
sin (π (Jint − k + δ))

sin
(

π(Jint−k+δ)
M

) ej(a(Jint−k+δ)+φ)

+
sin (π (Jint + k + δ))

sin
(

π(Jint+k+δ)
M

) e−j(a(Jint+k+δ)+φ)

}

+
H∑

h=2

Ah

2M

{
sin (π (hJint − k + hδ))

sin
(

π(hJint−k+hδ)
M

) ej(a(hJint−k+hδ)+φh)

+
sin (π (hJint + k + hδ))

sin
(

π(hJint+k+hδ)
M

) e−j(a(hJint+k+hδ)+φh)

})
(9)

III. Proposed Fundamental Identification and

Replacement (FIRE) Method

In this section, a test method is proposed that can take in
noncoherently sampled ADC output and perform full spectrum
test. Before describing the method in detail, a brief descrip-
tion about the foundation for fundamental identification and
replacement methods [11], [26]–[29] is presented.

It can be said that when DFT is applied on noncoherently
sampled data, the leakage in the spectrum is mainly due to

Fig. 5. Spectrum of FFT of noncoherently sampled data showing leakage.

Fig. 6. Spectrum of residue obtained after removing the fundamental.

the fact that the fundamental component is noncoherently
sampled. It can also be stated that for high resolution ADC
testing, the leakage from any frequency bin (other than the
fundamental) to any other frequency tone is significantly below
the total noise power of the ADC. This effect of noncoherent
fundamental is shown in Figs. 5 and 6.

Fig. 5 is the spectrum of a noncoherently sampled data. As
explained earlier, there is severe spectral leakage around the
fundamental. However, it can be seen that if the noncoherent
fundamental in this data is identified and removed, accurate
information of harmonics and noise can be obtained from the
spectrum of residue as shown in Fig. 6. However, it is required
to accurately identify the noncoherent fundamental to obtain
correct spectral results.

A. Fundamental Identification

Several methods were presented in the past to identify
the fundamental in a noncoherently sampled data [21]–[25],
[30]. One of the proposed methods is the interpolated discrete
Fourier transform (IpDFT). The IpDFT methods start from
applying windows on the noncoherently sampled data and
later perform interpolation to accurately estimate the funda-
mental component [21]–[25]. In [25], a criterion to choose
the optimal window to obtain accurate spectral characteristics
was proposed. However, in the proposed FIRE method, the
fundamental is identified from the DFT of noncoherently
sampled data without using windows. As a result, the method
is not dependent on windows and can accurately estimate the
fundamental.
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Substituting J = J int + δ in (3), in order to identify the fun-
damental, it is required to estimate the values of J int , δ, A and
φ. In the proposed FIRE method, the fundamental component
is identified in a two-step process. First step provides the value
of J int and initial estimates of δ, A, and φ from the DFT of
noncoherently sampled data. The second step obtains accurate
estimates of δ, A, and φ using Newton method. The procedure
to identify the fundamental is explained in detail below.

1) First Step: The time domain output data of the ADC,
x[n] in (3) is converted to frequency domain data by taking
the DFT of x[n], which is given by Xk in (4). Using DFT
coefficients, the value of J int and initial values of δ, A, and φ

are estimated.
Estimate Jint and δ J int is estimated by taking the index

of frequency bin in half spectrum that contains the maximum
power excluding the DC component.

�

J int = arg max1≤k≤M/2 |Xk| . (10)

The initial value of δ can be estimated with a three-
point calibration method using the DFT coefficients. Using
(9), for k = J int , Xk represents the DFT coefficient of the
fundamental and for k = J int + 1 and J int-1, Xk represents the
DFT coefficients of the adjacent bins on either side of the
fundamental bin. For high resolution ADCs, when estimating
the fundamental, the effect of harmonics can be neglected.
Also, in order to obtain a closed form expression for initial
value of δ, the term containing e−j(a(J+k+δ)+φ) can be neglected
compared to the term containing ej(a(J−k+δ)+φ)for M > 1024
[31]. The neglected term is later considered in the equations
to obtain an accurate estimate of δ in the second step.
After neglecting the above mentioned terms, Xk can be given
by (11)

Xk ≈ A

2M
ejφ 1 − ej2π(J−k)

1 − ej
2π(J−k)

M

. (11)

LetY = ej2πδ. (12)

For k = J int , J int + 1 and J int-1, using (11)

XJint =
A

2M
ejφ 1 − ej2πδ

1 − ej 2πδ
M

=
A

2M
ejφ 1 − Y

1 − Y
1
M

(13)

XJint+1 =
A

2M
ejφ 1 − ej2πδ

1 − ej
2π(δ−1)

M

=
A

2M
ejφ 1 − Y

1 − Y
1
M e−j 2π

M

(14)

XJint−1 =
A

2M
ejφ 1 − ej2πδ

1 − ej
2π(δ+1)

M

=
A

2M
ejφ 1 − Y

1 − Y
1
M ej 2π

M

. (15)

The above three equations can be used to solve for Y in
terms of XJint , XJint+1, and XJint−1

Y
1
M = ej 2πδ

M =

⎛
⎝ XJint

XJint+1
− XJint

XJint−1

XJint
XJint+1

− XJint
XJint−1

+ ej 2π
M − e−j 2π

M

⎞
⎠ . (16)

Fig. 7. Error in estimating δ versus actual value of δ using (17).

From (12) and (16), the initial value of δ, δ0, can be
estimated by (17) as

δ0 =
M

2π
imag

⎛
⎝ln

⎛
⎝ XJint

XJint+1
− XJint

XJint−1

XJint
XJint+1

− XJint
XJint−1

+ ej 2π
M − e−j 2π

M

⎞
⎠

⎞
⎠ . (17)

Estimate A and φ. Now that J int and δ are estimated, the
initial values of A and φ can be estimated using (13). Taking
magnitude of XJint gives the initial value of A, A0, as shown
in

A0 = 2M
∣∣XJint

∣∣ ∣∣∣∣∣ 1 − ej
2πδ0
M

1 − ej2πδ0

∣∣∣∣∣ . (18)

The initial value of φ, φ0, can be estimated by using A0 and
δ0 as shown in

φ0 = −imag

(
ln

(
2MXJint

A0

1 − ej
2πδ0
M

1 − ej2πδ0

))
. (19)

Hence, using (10), and (17)–(19), J int and the initial values
of δ, A, and φ are estimated.

2) Second Step: It can be noted that (11) involves an as-
sumption to neglect e−j(a(J+k+δ)+φ)term. The error in estimating
the value of δ for 1000 runs using this assumption is shown in
Fig. 7. It can be seen that the values of 1000 randomly selected
δ’s were estimated with a maximum error of about 10−4. How-
ever, to perform high resolution ADC test, the estimation error
should be very small. Also, in order to propose a method that
is independent of the resolution of ADC, the error should only
be limited by the noise power per bin (i.e., Pnoise/M). To obtain
these requirements, it is necessary to include e−j(a(J+k+δ)+φ)term
in estimating the three parameters δ, A, andφ. The expression
of XJint without neglecting e−j(a(J+k+δ)+φ)term is shown in (20).
It can be seen that the expression is a nonlinear equation in δ.
Also, XJint can be represented with both real and imaginary
parts given by RJint and IJint , respectively. It should be noted
that both RJint and IJint are functions of J int , A, δ, and φ

XJint =
Aejφ

2M

1 − ej2πδ

1 − ej 2πδ
M

+
Ae−jφ

2M

1 − e−j2π(2Jint+δ)

1 − e−j
2π(2Jint+δ)

M

(20)

= RJint (Jint,A, δ, φ) + jIJint (Jint,A, δ, φ). (21)

Similarly, XJint+1 and XJint−1 need to be modified from (14)–
(15) to include the neglected term in (11). It can be seen
that two equations are obtained by taking the real part and
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imaginary part of (21) separately. Doing the same for XJint+1

and XJint−1, a total of six equations are obtained. Let the six
equations be given as f 1,..,f 6

f1(Jint,A, δ, φ) = RJint (Jint,A, δ, φ) − real(XJint ) (22)

f2(Jint,A, δ, φ) = IJint (Jint,A, δ, φ) − imag(XJint ) (23)

f3(Jint,A, δ, φ) = RJint+1(Jint,A, δ, φ) − real(XJint+1) (24)

f4(Jint,A, δ, φ) = IJint+1(Jint,A, δ, φ) − imag(XJint+1) (25)

f5(Jint,A, δ, φ) = RJint−1(Jint,A, δ, φ) − real(XJint−1) (26)

f6(Jint,A, δ, φ) = IJint−1(Jint,A, δ, φ) − imag(XJint−1). (27)

From above six nonlinear equations, the three parameters
are accurately estimated by Newton method and least squares.
Using Newton method, the value of y in (k + 1)th iteration,
yk+1, is given by

yk+1 = yk − Bk\fk, (28)

where “\” operator is the least squares operator, yk is the vector
containing the three estimated parameters in kth iteration, f k

is the vector of f 1..f 6 evaluated using estimated values in yk,
and Bk is the Jacobean matrix evaluated using values in yk as
shown below

Bk =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂f1

∂A

∂f1

∂δ

∂f1

∂φ

. . .

.

.

.
∂f6

∂A

∂f6

∂δ

∂f6

∂φ

⎤
⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣
yk

, fk =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1

.

.

.

.

f6

⎤
⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣
yk

, yk =

⎡
⎣ A

δ

φ

⎤
⎦

∣∣∣∣∣∣
k

.

(29)
It can be mentioned that this method always converges to

a global minima as the initial points to start the iterations are
very close to the actual values. Also, it can be noticed that the
number of operations in each iteration is no longer dependent
on the length of the data record. Each iteration involves
six equations and three unknowns, thus making the method
more computationally efficient compared to other sine fitting
methods [12]–[15] that use total data record for each iteration.
Using rigorous simulation study, it is seen that a maximum
of five iterations would always result in delivering precise
values of the three parameters, thus, accurately estimating the
fundamental. This accuracy in estimating the three parameters
is limited by the noise power per bin (Fig. 9). The error in
estimating the same 1000 values of δ’s (as in Fig. 7) using
this two-step method is shown in Fig. 8. It can be seen that,
the estimation error using the two-step method is decreased
by three orders (from 10−4 to 10−7) compared to that using
(17). Also the error obtained using this method is only limited
by the noise power per bin as shown in Fig. 9. A total of
50 randomly selected values of δ for each value of SNR are
considered and the error in estimating δ is noted down. The
data record length (M) for all runs is 4096. With constant

Fig. 8. Error in estimating δ versus actual value of δ using two-step method.

Fig. 9. Error in estimating δ using two-step method for different SNR values.
With fixed signal power, as SNR increases, estimation error decreases.

data record length (M) and signal power, as the value of SNR
increases, the noise power per bin decreases. It can be seen
from Fig. 9 that as the noise power per bin decreases (i.e., as
SNR increases), the estimation error also decreases and more
accurate values of δ can be obtained. Hence, the proposed two-
step fundamental identification method accurately estimates
the fundamental component and the accuracy is only limited
by the noise power per bin. Let the final estimates of δ, A, and

φ be given as
�

δ,
�

A, and
�

φ respectively.

B. Estimate Noncoherent Fundamental

Using
�

δ,
�

A, and
�

φ, the non-coherent fundamental compo-
nent in x[n] can be estimated as x−nc[n] and is given as

x nc[n] =
�

A cos

⎛
⎝2π

(
Jint +

�

δ
)

M
n +

�

φ

⎞
⎠ . (30)

C. Construct Coherent Fundamental.

The fundamental component that is coherent (signal corre-

sponding to J int cycles) can be constructed using
�

A and
�

φ,
and is given as x−c[n], as shown in

x c[n] =
�

A cos

(
2π (Jint)

M
n +

�

φ

)
. (31)

D. Fundamental Replacement

Using (30) and (31), the noncoherent fundamental can be
removed from the output of ADC and replaced by a coherent
fundamental. This replaced output is given as xnew[n]

xnew[n] = x[n] − x nc[n] + x c[n]. (32)
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Fig. 10. Flow chart to perform spectral testing using proposed FIRE method.

Since the noncoherent fundamental component in x[n] is
replaced with a coherent fundamental in xnew[n], taking FFT
of xnew[n] gives accurate spectral results (SNR, SFDR, THD).
Thus, the method can be used to perform full spectrum test
without using windows and without large increase in area and
test time (as shown in simulation results).

The flow chart in Fig. 10 summarizes the steps to be
performed for spectral test using FIRE Method.

IV. Simulation Results

In this section, simulation results to verify the functionality
and robustness of the proposed FIRE method are presented.
The computation time of the proposed method is also com-
pared along with other methods used for noncoherent sam-
pling. In Sections IV and V, one data stream was used to
estimate the spectral characteristics. The data record length
was selected to accommodate the effect of noise.

A. Functionality

An 18-bit ADC was generated using MATLAB with an INL
of 1.2 LSB. The true THD, SFDR, and SNR values of the ADC
are obtained by sending a pure sine wave that is coherently
sampled. Later, a noncoherently sampled pure sine wave with
same amplitude is sent to the same ADC and the proposed
method is used to obtain spectral characteristics.

Fig. 11 shows three spectrums of the same ADC obtained
using the following cases. The blue spectrum is obtained
when the ADC is coherently sampled with M = 16384 and

Fig. 11. Plot showing the spectrum of an ADC for three cases. Blue
spectrum is obtained using coherent sampling (Jint = 593), red spectrum is
obtained using the proposed FIRE method on noncoherently sampled data
(J = 593.1237), and green spectrum is obtained after performing DFT on the
same noncoherently sampled data (color version of the figure is available at
IEEE online or from the authors).

J = 593.00. The spectrum is clean without any leakage. The
other two spectrums are obtained using noncoherently sampled
data with J = 593.1237. The green spectrum is obtained when
DFT is directly performed on the noncoherently sampled data.
As expected, there is severe leakage in the spectrum due
to noncoherency (δ = 0.1237). However, using proposed FIRE
method on the same noncoherently sampled data, the leakage
is completely eliminated as shown in the red spectrum. It can
also be seen that the red spectrum exactly matches with the
blue spectrum. Table 1 lists the spectral results estimated using
the proposed method on noncoherently sampled data and the
coherently sampled method. It can be seen that the results
obtained from noncoherently sampled data using FIRE method
are very close to those obtained using coherent sampling
method. This shows that the proposed method accurately
estimates the spectral characteristics even when an input signal
is not coherently sampled.

B. Robustness

The robustness of the method with signal frequency and
noncoherency is also presented. An 18-bit ADC with INL of
2.4 LSB was simulated. 1000 values of δ and J int correspond-
ing to input signal are randomly generated. The values of δ

and J int range from -0.5 to 0.5 (the whole range of δ), and
from 0 to M/2 (whole Nyquist range), respectively. The THD,
SFDR, and SNR of the ADC obtained by coherent sampling
are -104.2 dB, 107.5 dB, and 108 dB, respectively. The errors
obtained in estimating the THD, SFDR, and SNR values of
the ADC with respect to signal frequency (given as a fraction
of sampling frequency) are shown in Fig. 12. It can be seen
that the values are very accurately estimated and the method is
robust for input signal frequency in the whole Nyquist range.
Fig. 13 shows the errors in THD, SFDR, and SNR with respect
to noncoherency, δ. It can also be seen that the method is robust
over the whole range of δ, from -0.5 to 0.5. Hence, the method
is robust for input signal frequencies in the whole Nyquist
range and for any noncoherency. This robustness study totally
eliminates the requirement of coherent sampling for spectral
testing using FIRE method.
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TABLE I

Spectral Results of 18-Bit ADC Corresponding to Fig. 11

Method THD (dB) SFDR (dB) SNR (dB)
Coherent + DFT (Ideal) −110 113.7 108.5
Non-coherent + FIRE −109.7 113.6 108.6

Fig. 12. Error in estimating THD, SFDR, and SNR over the whole range of
input signal frequency (from DC to Nyquist range).

Fig. 13. Error in estimating THD, SFDR, and SNR over the whole range of
noncoherency in the fundamental, δ (from −0.5 to 0.5).

C. Computation Time

The calculation time complexity of the proposed method
is of the order of M∗ log2 M, since, performing FFT is the
only major time consuming block. The time taken by the
proposed FIRE method is compared with different windows,
the best data record length method [26] and a four parameter
sine fitting method [4] in Table 2 (using MATLAB on a
64-bit, Intel Core i5 CPU with 4GB memory). It can be seen

TABLE II

Comparison of Calculation Time

(J = 519.379, M = 8192, 18 − bitADC, INL = 1.4LSB)

Method Time Functionality
Proposed Method 1.7 ms Accurate
Best Data Record Method [26] 27.8 ms Accurate
Window 2 in [32] 2.9 ms Accurate
Blackman Harris (4-term) 0.7 ms Inaccurate
Hanning 0.5 ms Inaccurate
Hamming 0.9 ms Inaccurate
* Four Parameter Sine Fit >25.2 ms Occasional Inaccurate SFDR
(Nonlinear Least Squares)

*: Time taken to only estimate the fundamental accurately. Later,
3-parameter fit is required to estimate each harmonic using total 8192 points
which results in more computation time (Clause 8.8.1.3 of [4]).

that of all the methods listed, the proposed method provides
accurate test results with least computation time. The method
in [26] consumes more time as the best data record length
is not necessarily a power of two. This results in larger
computation time for the FFT algorithm [26]. It can also
be seen from the table that only one window can accurately
test an 18-bit ADC while the other three windows cannot be
used to test. This shows the dependency of results on the
type of window used. As a result, prior knowledge about the
resolution of ADC is required to perform spectral test using
windows. The computation time using a four-parameter sine-
wave fitting method using time domain data and nonlinear
least squares method is shown. Though the method provides
accurate estimates of fundamental, it can be seen that using
all time-domain data consumes large computation time. As a
result, the proposed FIRE method can be readily used to test
any resolution ADC to obtain fast and accurate spectral results.

V. Measurement Results

In this section, measurement data is used to validate the
effectiveness of the proposed FIRE method. Two commercially
available ADCs are tested for spectral characteristics with
noncoherent sampling using the FIRE method. The first ADC
is ADS1282, which is a very high resolution delta-sigma ADC
with an SNR of 120 dB. This ADC is used to verify the
functionality of FIRE method for very high resolution ADCs.
The second ADC is ADS8318, which is a 16-bit, 500 kSPS
successive approximation register (SAR) ADC. This ADC is
used to verify the robustness of proposed FIRE method with
respect to whole range of noncoherency, δ, using measurement
data.

A. ADS1282 Test (Functionality Test)

Fig.14 shows the test setup used to test ADS1282. DAC1282
is used to provide the pure input signal to test ADC. Both
the DAC and ADC are controlled by the same master clock.
The ADC sampling clock frequency is 1 kHz and the input
signal frequency for coherent sampling is 31.25 Hz. A total
of 4096 points were sampled (M). The value of J obtained is
128 for coherent sampling. With this setup, a clean spectrum
is obtained and is given by the blue plot in Fig. 15. Later, the
same ADC is noncoherently sampled with signal frequency
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Fig. 14. Test setup for ADS1282 (fSamp = 1 kHz, M = 4096, Jcoherent = 128,
Jnoncoherent = 126.781).

Fig. 15. Plot showing spectrum of ADS1282 for four different cases. The
blue spectrum is obtained with coherent sampling (J = 128). The red spectrum
is obtained when FIRE method is used on noncoherently sampled data
(J = 126.781). The green spectrum is obtained when DFT is performed on
noncoherently sampled data. The purple spectrum is obtained when a four-
term Blackman-Harris (B-H) window is used on the noncoherently sampled
data (color version of the figure is available at IEEE online or from the
authors).

given by 30.952 Hz, which results in J equal to 126.781.
This corresponds to noncoherent sampling with δ=-0.219. The
spectrum of the output of ADC when FFT is applied on this
data is given by the green plot in Fig. 15. As expected there
is severe spectral leakage. However, using the proposed FIRE
method on this noncoherently sampled data resulted in a clean
and accurate spectrum as shown by the red plot in Fig. 15. It
can be seen that the red spectrum (FIRE) matches with the blue
spectrum (coherent) and provides accurate spectral results for
a very high resolution ADC. To show the effect of windows
on spectral testing, the spectrum obtained when a four-term
Blackman Harris window is used on the same noncoherently
sampled data is shown by the purple plot in Fig. 15. Table 3
compares the values of THD, SFDR, and SNR of the ADC
using the FIRE method and windows method with the values
obtained using coherent sampling method. It can be seen that
the FIRE method accurately estimates the parameters. From
the purple plot in Fig. 15 and from Table 3, it can be said that
four-term Blackman Harris window cannot be used for testing
this high resolution ADC. Hence, as mentioned earlier, the
choice of window used is dependent on the resolution of ADC.

B. ADS8318 Test (Functionality and Robustness Test)

The second ADC that is tested is ADS8318. The test setup
is as shown in Fig. 16. A signal generator is followed by two
band pass filters with center frequency at 10 kHz. The output
of the filter is fed to the input of ADC. The ADC is clocked
at 500 kSPS and a total of 2048 samples were collected. The
input signal frequency to achieve coherent sampling is given

TABLE III

Spectral Characteristics of ADS1282 Measured Using

Coherent and Noncoherent Sampling (in dB)

METHOD THD SFDR SNR
Coherent −130.9 133.4 120.3
Non-coherent + FIRE −129.6 132.3 120.1
Non-coherent + 4-term B-H Window −126.5 130.8 90.5

Fig. 16. Test setup for ADS8318.

Fig. 17. Spectrum of ADS8318 using coherent sampling.

by 10.009765625 kHz, which gives a value of J equal to 41.
Fig. 17 shows the values of THD, SFDR, and SNR along
with the spectrum of ADS8318 with coherent sampling. For
a value of δ = 0.46, Fig. 18 shows the spectrum of the same
ADC using FIRE method. It can again be seen that there is
no leakage in the spectrum in spite of noncoherent sampling
and the spectral parameters are very accurately estimated.

Later, to test for robustness of the FIRE method for
any value of noncoherency (δ) using measurement data, the
frequency of input signal is changed from 9.887 kHz to
10.132 kHz so that the value of J varies from 40.5 to 41.5.
This covers the whole range of δ from -0.5 to 0.5. The values
of THD, SFDR, and SNR are evaluated for each case and
plotted in Figs. 19, 20, and 21, respectively. The variation of
THD, SFDR, and SNR for different values of δ is expected
as only 2048 points are sampled to test a 16 bit ADC. It can
be seen that the values of THD, SFDR, and SNR are very
accurately estimated using the proposed FIRE method for any
value of noncoherency, δ.

Hence, the functionality and robustness of the proposed
FIRE method with noncoherent sampling is successfully vali-
dated using measurement data from two high resolution ADCs.
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Fig. 18. Spectrum of ADS8318 using non-coherent sampling and proposed
FIRE method.

Fig. 19. Measured THD values over whole range of δ for ADS8318.

Fig. 20. Measured SFDR values over whole range of δ for ADS8318.

VI. Conclusion

A new Fundamental Identification and Replacement (FIRE)
test method was proposed that completely eliminates the re-
quirement of coherent sampling for full spectrum test. A two-
step method using DFT and Newton method was described to
accurately identify the noncoherent fundamental. It was shown
that the accuracy with which the fundamental was identified
is only limited by the noise power per bin (Pnoise/M). As a
result, the method can be readily used to test any ADC output
without prior knowledge about the resolution of ADC, unlike
windowing method. Simulation results were presented to show
the functionality and robustness of the proposed FIRE method
with respect to any noncoherency (δ) and to any input signal
frequency in the whole Nyquist range. The time complexity of
the method is of the order of M*log2(M). Thus, all the issues
related to previous state-of-the-art techniques, such as large
computation time, large area, lack of robustness of the method
over the whole Nyquist range, dependency of the results on
the window chosen and inability to perform full spectrum
test, have been addressed in the proposed FIRE method.
Furthermore, measurement results using two commercially
available high resolution ADCs were presented that validated

Fig. 21. Measured SNR values over whole range of δ for ADS8318.

the accurate functionality and robustness of the FIRE method.
Finally, it can be said that the FIRE method can be used in
all forms of test, such as Bench characterization, final test and
BIST, to save the cost and effort associated with achieving
coherent sampling.
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