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Abstract - This article presents an alternative method for
testing Analog-to-Digital Converters (ADC) by non-coherent
spectral analysis using weighting windows andfocusing on the
maxima of the window spectrum instead ofsumming the power
inside the main lobe of the window spectrum, as it is always
done. Comparing to the existing method, theoretical laws for
computing fundamental, harmonics and noise power spectral
densities are derived and software simulations are used to
validate them..
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I. INTRODUCTION

ADC test by spectral analysis is a well known and
accurate method for the quantization of ADC figures of
merit in terms of Signal-to-Noise Ratio (SNR), Spurious
Free Dynamic Range (SFDR), Total Harmonic Distortion
(THD), Signal-to-Distortion-and-Noise Ratio (SINAD)
and the derived Effective Number Of Bits (ENOB). To
this purpose, a near full scale sine wave is provided to the
device under test (DUT) input, then a Discrete Fourier
Transform (DFT) of the output taken data is computed,
and, finally, the power spectrum densities of
fundamental, harmonic, spurious, and wide band noise
components are derived from the obtained spectra [1-3].

This method only requires that the input sine wave to
be the purest and that clock signal to have the smallest
jitter. In addition, a condition must be verified between
input and clock frequencies: the coherence. This
condition is formerly known as:

fn Nm (1)
fs N

Where are respectively the input sine wave signal
frequency, the sampling clock frequency, the number of
periods of the sine wave, and the number of samples in
the data acquisition. There is a double condition in
equation (1): first, the number m of input sine periods in
the acquisition should be an integer. This condition is
required because of the fact that FFT processing applies
to a finite length data output stream, assuming this
stream is periodic, repeating itself to infinite time.

Having a integer number of periods of the input sine
wave in the output data stream avoids any discontinuity
between the last sample of one motif and the first sample
of the following one. In the spectral domain,
discontinuities make the energy of a component spread
over the entire spectrum. This is well known as "spectral
leakage" [4].

Secondly, it is necessary to obtain all the ADC output
codes in the output data stream, so m and N must be
relatively prime. As N is chosen to be a power of two for
FFT computation, m must be and odd integer.

In real ADC testing, coherence cannot be precisely
obtained because of the lack of precision in the
frequencies delivered by waveform generators. So a non
negligible part of spectral leakage occurs and a good
solution is the use of weighting windows, whose
particular time domain shape reduce the discontinuities at
the bounds of the measurement time window, and reduce
spectral leakage. The second section of the paper derives
the common method based on the energy of the main
lobe of the window transform to compute the
components PSD. The main disadvantages of this
method are explained. Third paragraph talks about the
proposed method, based on the window's main lobe
maxima and zero padding. A comparison is done,
including statistical aspects of the two methods. Finally,
the conclusion present possible solutions on how to
reduce the variance of the noise power estimation.

II. NON COHERENT TESTING: USE OF WEIGHTING
WINDOWS

Non-coherence in ADC testing is caused primarily by
the lack of precision of the waveform generators
effective frequencies. First, some generators just have
three or four digits of resolution when setting the
frequency for the delivered signal. Secondly, the
generators are based on local oscillators with jitter and
frequency offset. While jitter is responsible for phase
noise, frequency offset cause non-coherence.
A precision of about 100 ppm is common for medium

quality generators, so for 1 MHz, the frequency offset
should be 100 Hz. Fig. 1 and 2 easily show that a 100 Hz
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offset compared to a 1.0021972656MHz input sine wave
(with 10 MHz sampling clock) is catastrophic for
spectrum analysis.

Fig. 1. Acquisition with coherent frequency.

Fig. 1 and 2 are results of simulation of a 12-bit 10
MSPS A/D Converter, with our test software, written in
LabVIEW®. Fig. 2 shows not only that a bias is made on
the fundamental PSD estimation but also that estimation
of harmonics and noise power is not possible.

Discrete Prolate Spheroidal Sequences (DPSS) class
windows that are totally defined by their main lobe width
and are more accurate with that. In addition, noise is
present all over the frequency axis and it is difficult when
computing the power inside the main lobe to subtract the
noise part. For those reasons, we are interested with the
peak of the main lobe, which is actually the bias brought
by the use of windows in spectral analysis. The following
explain our investigations.

III. THE PROPOSED METHOD

A. Estimation ofHarmonic Components
Now let us consider a discrete-time, noiseless, analog

sine wave, at coherent frequency:

x(n) = A.sin 2zTN n.f4.

withA ERn = 0,1, ...,N -1

Ifwe multiply to x(n) a window sequence w(n), so:

(2)

(3)

Then the discrete time Fourier transform ofXW(k) is:

XJ (k) = Z x (n) w (n).e N

Lk = -N/2,-(N/ 2-1),...,- 1,0,...,N /2 -1

Fig. 2. Acquisition with coherent frequency.

The use of time weighting windows is a good solution
to correct this issue. Windows are generally cosine based
mathematical functions whose main particularity is to be
zeroed at their boundaries. So, if we multiply term by
term an N-samples constructed window by the N-
samples data acquisition sequence, the widowed data is
downed to zero at its boundary, so the so called
discontinuities have been greatly attenuated.

Multiplication in the time domain provides
convolution in the frequency domain. Besides IEEE
standards are not clear from choosing the window, one

can say that window needs to have side lobes lower than
the ADC noise floor. The classic method in the literature
[5][6] says that the energy contained in the side lobes is
negligible in front of that of main lobe and one has just to
compute the power inside the main lobe of the windowed
signal spectrum to obtain the fundamental power.

It is commonly adopted that the main lobe width is
about (2 i + 1) bins, where i is the number of cosine
terms of the time window. This is empirical and does not
have enough accuracy. Recent works [6] have used

Where j is the complex number such that j2=_ and
where k is the spectral bin frequency index.
As x(n) is noiseless, its power spectrum density is

composed by only one bin at frequency m.f. N (and also
its image). The spectrum of xW(n) is the convolution
between the spectrums of x(n) and w(n); and as input
frequency is coherent, the maximum of the spectrum of
w(n) is shifted by convolution to the position mf1N. So
the power spectrum of xw(n) is also composed by only
one bin at the frequency m.f. N.

And we have:

lXw(m)12 = lX (m)2 .W2 (0) (5)

With

|X(m) =A2 /2and

W)=N-1 N-1

W(O) - Zw(n)e0 = Zw(n)
n=O n=o

(6)
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Then an estimation of the power spectral density of the
noiseless coherent signal x(n) is:

2 2
W' X(m)22IT, NW2 (0) Xwm (7)

fundamental power estimation when the non coherence
part is below 0.05. In particular, when a 7-term
Blackman-Harris window is used, the bias is only 0.4
percent for a non coherence part equal to 0.1 bin.

When non coherent sampling of the same signal
occurs, the frequency of the input signal does not
coincide anymore with one of the frequencies of the
discrete spectrum, as:

J, =(m+Am)fs/N,0< Aml<0.5 (8)

As a consequence, when convolution operates, the
maximum of the shifted window spectrum still coincides
with the input signal frequency, but not the discrete
spectrum frequencies, as it can be seen on fig. 3.

lxw2 (fin )w2

I

I_
mI m

m+Am

/Rectangular (no windowing) \
/Hamming Window\o0/ ~~~~4-Terms Blackman-Harris Window \
/7-Terms Blackman-Harris Window \

Non coherence part (bin)

Fig. 4. Bias on estimator vs non-coherence.

So the idea is to decrease the discrete frequency
increment Af = f/ N to reduce the non coherence part.
One solution is to take a larger number of samples.

This is not a good idea in industrial context because it
Discrete spectrum
maxima multiplies test time. Another solution is the use of zero

padding. The principle consists of adding zeroes to the
windowed data, so the number of samples is virtually
increased, with no additional information. This technique
is generally used to make more accurate frequency
estimation in the spectral domain. From an original
acquisition ofN samples, adding N(ZP - 1) zeroes (ZP is
the zero padding coefficient) after the windowed signal
allow for dividing the frequency increment by ZP. And
non coherence part Am is also divided by ZP.

(normalized)

Fig. 3. Non coherent sampling power spectrum (zoom on the
main lobe).

The windowed signal power spectrum XLY(k)12 is then
composed by all the DFT bins, with a maximum on the
nearest bin of input frequency, that's to say at the m-th
bin. And then,

(72 = _x2(22
N W. (Am)

Rectangular (no windowing)
Hamming Window

--4-Terms Blackrnan-Harris Window
7-Terms Blackrnan-Harris Window

8 16 32 64 128
Zero padding coefficient(9)

If we could know the magnitude spectrum of the
window at any point, we could use this method. But this
is not the case. As W2(0) is known, we can assimilate
W2('Jm) to W2(0) and use relation (7). Fig. 4 shows how
much bias is brought by the estimator (9). A 12-bit ideal
ADC with full scale input has been simulated, varying
input frequency so that the non coherence part Am is
absolutely below 0.5 bin. As the reader can see, for any
used window, including rectangular (i.e. no windowing),
the bias is negligible (below 0.8 percent, that is below
0.03 dB error on an SNR measurement) on the

Fig. 5. power of sine input corrected, vs zero padding
coefficient and chosen window.

Some software simulations have been realized, with an
ideal 12-bit ADC with near full scale input and
Am = 0.333 bin. Fig. 5 above shows that for any chosen
window, having a Zero Padding coefficient as low as 16
allow the recover of a good value of the original power.
Using 7-Term Blackman-Harris window help to limit the
zero padding coefficient to four, reducing the increase of
FFT processing time.

Tables 1 & 2 compile results and errors (relative to
theoretical) in percent for simulation of a 12-bit ADC,
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N=16384 samples and Am = 0.4 bin, respectively for 4-
term and 7-term Blackman-Harris window.

TABLE I
RESULTS FOR 4-TERM BLACKMAN-HARRIS WINDOW

|zero Effective |Power
padding

192
4
8
16
32
64
128
.256

Am
0.333
0.1665
0.08325
0.041625
0.0208125
0.01040625
0.005203125
0.002601563
0.00130078 1

(1sb2)
192 1990.36763283
2047472.45391083
2080048.70023233
2088269.92937449
2090330.14867702
2090845.48191147
2090974.34715185
2091006.55819762

12091014.61425993

Power estimation
Error (%)
8.08326
2.08224
0.52432
0.13115
0.03263
0.00798
0.00182
0.00028
-0.00010

Theses tables show that with ZP=8 or 16 for example
the results are very close to theoretical A2/2.

TABLE II
RESULTS FOR 7-TERM BLACKMAN-HARRIS WINDOW

zero Effective Power
padding Am (lsb2)
1 0.333 1989916.62475364
2 0.1665 2065281.91016924
4 0.08325 2084555.40391623
8 0.041625 2089400.89359167
16 0.0208125 2090614.12584245
32 0.01040625 2090917.47095953
64 0.005203125 2090993.34921137
128 0.002601563 2091012.30156883
256 0.001300781 2091017.04849742

Power estimation
Error(%)
4.83478
1.23053
0.30880
0.077073
0.01905
0.00454
0.00091
9.4897le-6
-0.00021

B. Estimation ofa Broad Band Noise Power
Let us now consider a N-samples white, Gaussian

noise signal r (n) with variance or2 . The windowed

noise is noted rw (n) = r(n).w(n) and its power spectral
density is defined by relation(10):

R,w (k) = r (n) w(n).e N (10)

k=-NI2,-(N/2-1),-1,...,0,1...,N/2-1

An estimation of the noise variance is then:

N2, 2ZR (k)I~rN NNPGk=O

The purpose is now to express the term NNPG as a
function of the maxima of the window power spectrum.
The Equivalent Noise Bandwidth of the used window
can is defined by:

N-1

Ew'(n)
ENBW = N n=°

[N-i 2

YEw(n)2
=O

N2NNPG
w2 (0)

(13)

Then a new expression for NNPG is:

w2 (O).ENBW
NNPG N2

N2
(14)

Finally, the estimation of noise variance can be re-
written by the following relation:

2 N-1 2

r ww2 W R (k)2~rW(0).ENBWk=O
(15)

C. Estimation ofBroadBandNoise Components
Included in a ReadADC Output Data Signal

The ADC output signal y(n) is the sum of a
fundamental sine wave x(n), some H harmonics sine
waves xh(n), h=2,3,...,H+], eventually some S spurious
sine waves xs(n), s=H+2,H+3,...,S+H+., and finally the
r(n) white, Gaussian noise studied above. So the
magnitude squared spectrum of y(n) is a set of parts
which concern deterministic signals corrupted by noise
and parts of noise only.

If the total number of samples is N, and if we note NR
the number of DFT bins exclusively containing the noise
part, we can define NR by the relation:

NR = N - (2{+ 1)(2H + 2S + 1) (16)

Where (2A + 1) is the number of bins considered to be
in the main lobe of the used window. At this time, the
expression of the estimated noise variance is given by:

2 N2 ZY (k)2
NRN.NNAGkBPz w(1 1)

Where NNPG is the normalized noise power gain of
the window and is defined by:

N-1

Ew (n)
NNPG 0 (12)

N

(17)

Where Yw (k) is the windowed DFT of the complete
ADC output signal and where BR is the part of the
spectrum that only contains noise component. By
replacing NNPG by its expression in (14), we can write
the new expression of 7&2
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N 2o EY (k;l (18)

r5 NR W2(0).ENBW kcBR

Then for any sinewave xi(n),i =1,2,...,H+S+l
contained in the ADC output signal, we can write an

estimation of its power, like it is when coherent sampling
and no windowing occur:

aX N X (M)2
IT", N.W2(0)

2 '2

N

That is,

2 -J~MJ2 _2 2 Z R (k)12
N.WU (0) ) NR Tr (0))ENBWk B. (2)

D. Zero Padding Consideration and Choice ofthe
Windowfor Broadband Noise Power Estimation

When using zero padding (with ZP coefficient), there
are ZP.N frequency bins and NR ZP.NR bins of
noise.

So the expression of noise variance becomes:

NK.ZPV ( E2

NR, p2 ().LuENBrWkcB

Last remark for the choice of the used window: we
have seen that any window can be chosen for the
estimation of the fundamental power. Any window can
be chosen for estimation of a noise only signal. But for
the estimation of a noise with the presence of a large bin
which is the fundamental, it is evident that noise power
estimation requires the side lobes of the window to be
small enough. So the side lobe maximal energy must be
in accordance with ADC resolution. In all cases, a 7-term
Blackman-Harris window seems to work very well.

IV. CONCLUSION

An alternative method for computing non coherent
spectral analysis of ADC performance has been
presented in this paper. It focuses on zero padding
techniques to improve frequency resolution, and
obtaining the power of a harmonic component by the
maximum of the window main lobe. Noise variance has
been re-written as a function of the window parameters
W(O) and ENBW. In comparison to the usual main lobe
energy method, this one has the advantage of regarding
only one bin, and not adding all the noise parts of the
bins contained in the main lobe to the harmonic power.
In addition, no numbers of bins are needed to make the
sum, as a function of the used window. There is still
another disadvantage. When increasing the number of
samples, the variance of the estimation of the noise
power increases too. It may be interesting to associate the
method described here with averaged periodograms
methods like Bartlett's and Welch's.
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